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ABSTRACT

The theory of the computable a-posteriori error estimate for a finite element

method is developed. Among other things, it is shown that the error estimate is

very reliable and the ratio (called effectivity index) between the estimator and

the true error approaches one. Numerical examples computed by program FEARS

(Finite Element Adaptive Research Solver) of the University of Maryland, illustrate

the effectivity and reliability of the estimators.
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1. INTRODUCTION

Rccent lv an incrc.sin t interest in the finite el ement computilt ions is

being focused on the reliability of the results and the quality of the used

meshes and elements.

During recent years at the University of Maryland, the studies were under-

taken which focused toward the development of a finite element system having

the following features.

a) The solver supplies the user with a reliable and accurate information

about achieved accuracy in the desired norm.

b) The solver constructs adaptively meshes which are leading to the highest

possible accuracy (through an adaptive refinement).

c) The solver uses the most simple input.

d) The solver combines the advances in the mathematics and computer science

in luding parallel computations.

The solver FEARS (Finite Element Adaptive Research Solver), its mathematical

version FM developed for Univac Series 1100 implements some of the points mentioned

above The detailed description of FEARS and the experience with it will be

published elsewhere. :.or some information about FEARS and its applications,

we refer to I 2 * r [ l , f 4 1 [ 5].

or analysis of the parallelity we reter to [ 1 1.
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One of the main aspects of FEARS is the theory of the a-posteriori estimates.

Some aspects of the a-posteriori error estimates and optimality of the meshes

were investigated in [6 1 , f 7 1 , [ 8 1 .

The error norm H is approximated by the computable estimator c

computed through error indicators n.(A) associated to every element 6 and1

computable locally by knowledge of the finite element solution at the particular

element A and its direct neighbors. The effectivity index 0 = expresses

the quality of the estimator and 0 should be close to one when the error is

sufficiently small (e.g. 5.). It is desirable that the estimator 6 has the

following two properties:

(1.) 0 < CL < e <_ CU <

with CL and CU  independent of the solution and the meshes under very general

conditions.

(1.2) 9 +1 as 11ell - 0

provided that some addicional assumptions about smoothness are made. The present

paper develops the theory of the estimator which satisfies (1.1) and (1.2), and

is implemented in FEARS. The energy error norm is assumed and model elasticity

problem is considered.

Section 2 consists of some preliminary notions.

Sections 3 and 4 elaborate on the type of meshes which are adaptively

constructed.

Sect ion 5 deals wirh the approximation properties of the elements on the



admissible meshes.

Section b formulates the model problem (elasticity problem).

Section 7 develops the estimator and proves (1.1).

Section 8 proves that the estimator is asymptotically correct, i.e.

Section 9 deals with two computational examples and discusses the effectivity

of the approach.

The adaptive construction of the meshes is based on the equilibration of

the error indicators. This principle was theoretically analyzed in [7 1 for

one dimensional problems and its theoretical investigation in the context of

FEARS will appear elsewinere.

Si,
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2. BASIC NOTATION

'throughout this article we denote by R2  the two dimensional real Euclidian

space with x (xlX 2) C 
2 IiI = max(Ix i)ix I = +X 21/2 Let

QCR 2 be a bounded set and Q its boundary. We define

diam Q = sup IIx-yII
xEQ

dist(x,Q) = infllx-yII
yEQ

2
and for QiER 2 , i = 1,2

dist(QI,Q2 ) = inf j x-yjj
xEQI

xEQ2

An index E will denote that the norm ''. 1E is used instead of I"1
E.., distE(x,Q) = infllx-yI!E

yEQ

For a p > 0 , Qr is the p-neighborhood of Q

0" = xEM 2 Idist(x,O) < P }

The closure of Q in IR2  is denoted by Q , int Q means as usual the interior

of Q

By Z2 we denote the set of all two dimensional integers k (kl,k 2) 9

ki, i = 1,2 integral.

Suppose e > 0 is a positive real number, then we will write for any kEZ2

I"



Q = {xEIR 2kie < x < (ki+l)6 , i = 1,2}

Assume that Z CZ2 is a finite set. Then we denote

o k k

kOE

We shall assume that Z is such that Q2 is a Lipschitz domain. For brevity,

whenever it cannot lead to misunderstanding we shall write Q instead of R .

2 0
When we talk of a square S in IR , we shall always suppose that it is closed

and that its sides are parallel to the coordinate axes, i.e. S is of the form

[a,a+d] x [b,b+d] for a,bdEIR, d > 0

As usual, let L2 (P) = H°(Q) be the space of all square integrable functions

on 2 with the inner product

(uv)L() uvdx, dx dxIdx2

and the corresponding norm II-IIL2(Q) By Hk() , k > 0 integral we denote

the usual Sobolev space with the norm

Hl li = < < ID'u L(2)H ]H (Q) 0,1(11<~k 2 a

where x = (al, 2 )' (I > 0 , k = a I + n 2

and

OGLa _

Do,=
"xl x22
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0
Obviouslv we have H () = L 2(Q) . We will also use the notation

2 = [ lu [2

k)u 11 (S2)
H () [=k 2

We define the support of a function uEL 2(Q) in the usual (distributive) way

and denote it by supp u . Let H (Q)CH () be the completion of the set of

all functions having compact support in Q

We will also deal with functions defined on one dimensional manifolds,

more precisely on the boundary 3Q or a part r of it. The notation

L2(F) = H°(F) has then the obvious meaning.
m k(i)

Let F = UFi, where each F. is a clo,;ed side of some Q, C Q

k(i)EZ with P.C V) , (i = l...,m); then we shall write01

t () = {uEH (Q) u = 0 on Fr

Obviously H1() it ' (s2) when F = al2 and H (0) = HI' (Q) when F =0

0Finally 1 C(2) we denote the space of all continuous functions on S2

and let

Slull = spux
°(f) xEQa

IIU1 01UPU(~

We will deal later with extensions of functions in H (02), H (M) and

Hl() from - into a neighborhood of Q.

Theorem 2.1. There exists an operator T mapping H (1) into H (012),

(where $ i'is a ,-neighborhood of s ) such that
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i) for a 2 < < , 0 < a < p and any square S CQ and any

0 < a< we have
0

lT H(su ) - H(S

with C independent of q, S, u

ii) If xEQP , xo§ , F # ) and distE(x,r) < diStE(X,32-F) then
E 10 diEtE(X

y 3Tu = 0 on S (x)-Q, - dist(xF)

with S (x) being the square with the center in x and lengthside y

iii) If 1*= K i.e., (Q) =H (Q) , then Tu = 0 on -

Proof. If is enough to prove the theorem in the neighborhood of the boundary

(i.e., endpoints) of F . In the neighborhood of all other points xE3 we

use the classical extension theorem when x F and we extend by zero when

xEF and apply the standard argument with partition of unity.

The endpoint of f can be located in a vertex of 3Q with the internal

3 1
angle a or - 1T or it can be on straight part of the boundary.

We will deal only with the case of the vertex in the coordinates origin

and the internal angle on -q . The other cases are analogous.

Let (see Fig. 2.1)

Ki
= {xE 4Q, distE(x,DQ-F) 1 distE(x,F))

*



x (ist (X,V) - dist (X,2-I')}

rp

Fiirc 2

Flitl ___ ___ in__ ____- p.r o f t e Tio .1



Obvious'Ly consists of a sector with the lines S Iand S 2as

its houndary. Let V be a symmetric (with respect to the origin) sector

with the boundary S1I and S 2 and let S1I be the line symmetric to SI
lu P1

(withi respect to Q F).Finally let VYC 2 (respectively Vc27) be the sector

bounded by d2 P and S (respectively v and W be the sector bounded

by S and F

Assume now that uECH (§,7 Bv an afine transformation,we construct

w EH MV such that w = u on 'oQ-F w(x) u( ) for x4ES. xS 1and

11XIE = IXIIE Obviously

wH M C Hu M v

The extention Tu on 2*be now the reflection of w (with respect to

-) It is readily seen that

H (% M V V

and for

we have

0Tu) (x) (

We extend u onl (, by zero.

BlY an afine transformation of W on V we can easily continue a function

v such that v u or.S and v =0 on 1 and
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1(v) i (w)

Now let Tu on S-**- be the symmetric image of v It is easy to see

that our construction Ilas all properties of the extension formulated in the

theorem when 1S (' Lse' . Sut ficle-t 1v large.
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3. THE MESH AND ITS BASIC PROPERTIES

W ,e . I I intro(u('e now a (lass of partitions of 2Zi 0

We define a mesh V(.!) = tA as a finite collection of closed squares

C- of various sizes with sides parallel to the coordinate axes, and which

are gcnerated by the fcllowing recursive rules.

k
i) The squares tQ0}5 kEZ , create a mesh.O

ii) If {3i} , i = ],...,m is a mesh, then a new mesh is obtained if any

i 1.A is subdivided into four congruent squares of half the side length of A

Anv A iED will be called an element and its sides the edges. The

vertices of the elements will be called the nodes. A node P will be called a

regular node if either PE 3Q or P is a vertex of four different elements.

Otherwise P is an irregular mode. By P(V) we denote the set of all nodes

of D and by R(V)CP(D) the set of all regular nodes. Finally let h(D) =

may diam
AEV)

Figure 3.1 shows an example of a mesh. The irregular nodes are marked by

a cross.

- -- 3

• Figure 3.1. An example of a mesh.
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L'et V A',i 1,.,n.Then obviously U A' = We shall

denote by AI(V) ,the subspace of all continuous functions on Q2 which are

Individul I11 hilinear on each A ,i = ]1..m . t is clear that

M (V)CHU

We will always assume that at least four different ACV lie in every

nk

Now we will 'TalZe further the basic properties of the meshes introduced

above.

LEM-1,N _3. 1. Le t '*"E V

I) AsSuIme that n'flf" 1 0 and diam A' s- diam A" .Then one and only

one of tile folliowing statement s holds.

i) A'f" is ust one point being a common vertex of A' and A"t

ii)A'l' is an edge of A' and is contained in an edge. F say,

of .".If x', x" .re any two endpoints of (A'fl A") and r respectively,

then x' -x" is an integral multiple of diam A'.

2) If PE P(O) ,PR(V) (i.e., P is an irregular mode) and P is a

vertex of .'E V.then there exists ',"E V such that

i) P4E 1%

ii) diam dim A

iii A'fl\' is an, edge of .

3) diamA"/diamA' = 2"' with s an integer.

Thle lemma can be asily proven by induction.

LEMMA 3.2. SupJpo e- that-- AEV_ . -Then at least one vertex of A is a
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regular node and if an edge of A is contained in 0k for some kEZ

k
then at least one vertcx of A which is not on Q 0 is a regular node.

Proof. Observe that any regular node always remains regular when our

recurrent construction is implemented. The lemma follows now easily since at

each step the midpoint of the subdivided element becomes a regular node and it is

a vertex of all four new elements created at that step.

As seen in Figure 3.1 there could be an element AEV , such that only one

of its four vertices iE a regular node.

LEMMA 3.3. Let D be a mesh and PER() . Then there exists

v EM(D) such that v (P) = 1 and v (Q) = 0 for any QER(D) , Q 0 P
p 11 p

Proof. We first note that it suffices to define v at the vertex of each

p

AED . Let D = {Ai } i = 1,... ,m . Assume that we have denumerated the

elements so that diam A > diam A i+l i = 1,...,m-l. We prove now our lemma

by induction with respect to i

1
First let us observe that all four vertices of A are regular nodes.

If one were irregular then by lemma 2.1, there exists AEV such that

1 1l
diam A > diam A This is a contradiction because A is the largest element.

Suppose now that j = 1 , or j > 1 and v has already been constructed
i=j-1 .P;

on U A . Consider now the vertices of A3 If Q is a vertex of AJ
i=1

and

i) Q is a regular node, we define v (Q) = I for Q = P and v (Q) = 0p p

for Q # P

ii) Q is an irregular node, then by Lemma 2J1, QEA' where

diam A' ' diam Ai . By induction assumption v was already defined

on A' and so v (Q) is defined too. We therefore construct v
P p i=l P

on A with desired property on U A1  Let us remark that
; -ii=l1
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1 f Q EU A then the "a lI Ue v (0) =1 respect ively 0 is the same as in

the previous phase.

LEMA 3. 4. Let 0 he a mesh and u E M(D) be such that u(Q) = 0 for any

QOE R(D) then u 0

Proof1. Le t {." hj e ntumerated as in the2 proof of Lemma 3.3. The lemma

1
will he proven by indUCtiOn with respect to 1 Because all vertices of A

are regulIar nodePs We hl !Ve 11 ilo A 1. Let now i =1...,jl< m and consider

11 on U. If the verteK P of Aj is a regular node then by assumption

u(P) ().If P1 is irregular node thvn by lemma 2.1, we have also P E A@

with d iam A,. d io .I I~ .u. , A' =A k ,for some k K] By induction

u = 0 onl U A and therefore u(P) =0 . So u = f0 in all vertices

of and go u (0 on I,) and lemma is proven.

Lemmas '1.3 and 1.4 show that the function u E P1(D) is uniquely defined

by its valuesi at t he rt gular nodal points.

1,or:mn I.i and argument,, ana logous to those used in the proof of Lemma

3. 3 vyi ,ld

LEMMNA I. . Le t h e ii mesh. Then

11 Thet ;(L fu I In usio I.- k pP ER(P) I creates a basis for M(D)

ii) v

DefIi it 1 on 3. 1: h set sp v PE()will1 be called a star

ase td to the node P or brief ly a P-st.3r.

Iea3.1~ (Hii) yields readily that U I=

P. OE R(V) p
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LEMMA 3.6. Let t ED , PER(D) and ANint , 0 . Then ACu.

Proof. Assume on the contrary that A ( Then there exists an open

set SCA , sfn , = o . Recause v E M(D) o v is bilinear on A . Butp p p

v = 0 on S , and herce v = 0 on A . This is a contradiction becausep P

we assumed that A n int w # 0p

LEIThA 3.7. The set , is connected in the sense that for any two elements

A', A"C there exists a sequence of elements A' = AOVA19 .. A = A" such

that

i ) A.Ca

ii) AinA i+# 0 and is the edge either A. or A1 + Ai+l

s
Proof. Let p = U A1 , 1 E D Assume that we have enumerated the

* j~l

(']Lmf'nts A- of 0 so that diam AJ - diam Aj + l , j 1,... s-j It is
p

obvious that we can restrict ourself to the case when A = A

First we prove that one of the vertices of A is the node P . Suppose

1 1
that the node P is not a vertex of A . Let Q be any vertex of A . If

Q is regular, then v (Q) = 0 . If Q is irregular, then there exists

A*EV with QEA* and diam A* > diam A . Thus A* Nint w = 0 and so v = 0P P

on A* by lemma 3.6 and it follows that v (Q) = 0 , so vp = 0 on A1

which is a contradiction. Now we prove the lemma by introduction with respect

to j . Assume therefore that we are able to connect Ak with A I and

consider the element .k+ If a vertex of Ak+l is the node P , then

k+l1
A can be connected with A because 0 is a Lipschitz domain. If all

vertices of Ak+' were regular nodes different from P then Ak+l p by

lemma 3.6.

So we need only consider the case where a vertex R of Ak + l is irregular
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and v (R) # . By lemma 3.1 there exists A*EV such that diam A* >p

kI ~~k+l aedeo Ak+ldiam A A*N k l  is an edge of A and REA* . Thus A*Cw andp
so A* = A1  1 -k . So Ak+ l can be connected with Aj  and therefore

with A and lemma is proven.

Lemma 3.7 shows that int w is a domain.
p

So far we have not made any restrictions concerning the mesh D . In

the next section we will analyze the family of K-meshes, which play an

essential role in the theory.

-ii
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4. THE K-MESH

lctinit ion 4.1. let K ) ,real. A mesh V will be called a K-mesh

if for any 1ER(V)

(4.1) diam , < K inf diam A'

A'EO
A'C1,

p

The definition has a dleir sense because of Lemma 3.6.

We conjecture that definition 4.1 is equivalent to 3K* > 0 such that

diam Afor all AED, sup diam A< K*
AriA' is an edge of A ' diam -

Everywhere in what will follow we shall assume that we deal only with

K-meshes. We mostly will not mention it explicitly.

LEMMA 4.1. Suppose V is a K-mesh. Then there exists numbers M. N

depending only on K such that

) if PER() then the P-star consists at most of N different

elements of D.

ii) If %,'EV then A'C w for at most M different PER(V)

iii) If 1%'E then there are at most 4K + 4 elements A"f V such

that A'n A" # 0

[Proof.

i) The star a can be contained in a square S with its side diam a

So for the number N of elements contained in w we have the simple estimate
P P

l 2
area w' [diam i ]2

N << p <
p- inf (area A') [inf (diam A')] 2  

<
A ,, A 1 ,)

P P

-4
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2
Hence N K

ii) If A'Cw~ th.en diam wp p K diam (A') Hence w pCQp where

p is a square with the center in the middle of A' and of the diameter"p

2(K-1/2) diam A' See Figure 4.1.

• ' (K-"10 IN"" A'

Q,

",'

Figure 4.1. The Relation Between 6' and W
p

Since o'C we have

diam A' < diam w < K inf diam A"
-- p - A,,C

..p

and hence for any A"C wP

(4.2) diam A" A'
- K
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The node P must be a vertex of some A"Cw satisfying (4.2). The numberP

of such elements is obviouslv bounded by

area Qa Prea < 4K 2 (K-1/2) -

diam A' -

K

Because not more than 4 regular nodes could be on any element, we see that

2 2
M < 16K-(K-I/2) in

ii!) Any vertex of A' can be a vertex of at most three other elements

and therefore by lemma 3.1 it is sufficient to bound the number of elements

with diam A" < diam A' such that AnfA' is an edge of A" contained

in some edge of /' , say P . Fix this F , and suppose that there are q

such t q is finite since by the definition of D , there is only a

finite imber of elements. Then for at least one such A" , A say , diam A <

I diam A' . Since Y v = I by lemma 3.5, there exists PoR(D) such
q PER(M) P

that v is not identically zero on AfA' , and therefore both A and
P

A'C w . But
p

q diam A < diam A' < diam u)< K diam A

Hence

q - K

and the lemma easily fcllows.

LEIMA 4.2. There exists a number L (depending only on K) such that
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R(D) can he partitioned into I .sets Xj, j ,.. such that if

P'n~ 0#Q then int (f)lint =0
Jp Q

Proof. Suppose P # o , P,oCR(V) and int fpint wQ 0 .By lemma

3.6 int flP int wQmust contain the entire interior of at least one element.

By Lemma 4.1 j contains at most N elements and each of these elements

can be contained in o ,for at most M-i nodes P'C R(D) , P j P' . There-

fore there can he at most N(M-1) regular nodes Q such that mnt flnint w # 00.

tie shall construct now the sets Xjby the following recursive procedure.

Let PI, P P be some enumeration of the regular modes. Set X I
Le P. 2 ""* r1=

Suppose that we have already defined sets Y ~ for some S >1
-£.1 -1A&I

t I~ . lf for P t 6R(D) and some 1 < k < m1itw lnint w Q =0 for

all Q 6.k .then choose k to he minimal, and set

=for t E { I , 1S I {kI

k ~k f{2

and define S =S . Otherwise set

=for 1 t<S

Witt) S -S I

Now from the first part of our proof we see that Si j N(M-l) + 1 and so

L < N CM-I + 1 and thc lemma is proven.
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Remark. As we mentioned in the Introduction, this paper develops the

basic ideas of C 1] . The lemma 4.1 relates to the intersection index and the

lemma 4.2 to the overlap index as introduced there.

Given an element AED we will always enumerate its vertices as shown

in Figure 4.2. 4 3

4

I

Figure 4.2. The Numeration of the Vertices

Let PER(D) and w its star. The node P is a vertex of at most 4
p

elements. We will denote by A C w the element for which the vertex number
p p

given by Fig. 4.2 has the minimal value. This rule associates to every P a

unique element.

Let now w be a P-star. Then by J we denote the invertible affineP P

transformation taking P to the origin and Jp (Ap) = [0,1] x [1,0] . Further

let Pp (wp) D will be called a standard P-star and we shall call
p p p p

members of S {J p(A)JAED , AC w } the standard P elements of P and

if no confusion arises denote them also by A . Note that p can equal 4Q

for P #Q and yet S S
p Q

LEMMA 4.3.

i) int D is a domain.

ii) There are not more than Z = AK) possibilities for S as P ranges

over R(D)

I III I l I I I I I ..
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Proof.

i) Follows immediately by lemma 3.7.

ii) The result will follow if we can show that there is a finite collection

of squares S1 .... S such that {U (A) JAED, Acw I = {S1, .. S }TI( )p p " T (k)

To this end we show by induction that the vertices of each J (A) must
P

have coordinates of the form (kq,t n ) where n = 2- ([g 2 ]i +l) k,t integral

JkJJ I£ -<22  and that diam J (A) = 2 An for some t = 1,2,3,... Here lint
-- p

denotes the integral part.

Now if AEV , ACw we can construct a sequence
p

A = Ao,...A = A
p 0 n

having the properties mentioned in Lemma 3.7.

Clearly any vertex of J(A ) satisfies the above inductive hypothesis.p

So suppose it holds for 3(Ao),... ,J(A.) 0 < i < n-1 . Then by Lemma 3.1

(3) diam A i+ diam A i , s integral, giving diam J (A ) = 2' diam J(A)

2 +sn for some integral 4,s . Since A+iCup we have as in 4.2 diam A
e p i+1

diam A /K . This gives diam(J (A > 1p(A+I ) _- and so + s > 0 and so we
P p i+l K

conclude that diam p(A.) = 2tn with t > 1 integral.

Suppose for the moment that A i+l < diam A . Appealing to Lemma 3.1 (1)

we see that the two vertices of p(A i+l) which are the end points of

Jp(Ai+ I )n fp (A1 ) must satisfy the induction hypotheses. Since 3 (Ai+I)

is a square, it follows also for the other two vertices. The bound on

Ikj jfW is a consequence of diam D < 2K . The case diam Ai < diam Ai+1

follows by a similar argument.

COROLLARY: There is not more than Z(K) of di fferent possible domains pK_

. . . . . ..---4 .. . 7 : .. . .. ... . -. - -. ,
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Given A EV we denote

(4.3) Q* (A) = U{%) IP4ER(V) ,CI

*As in the proof of Lemma 4.1 we have Q*(A)SCQ(A), where Q(A) is a square

* with the center at the middle of A and

(4.4) diam Q(A) < 2(K-1/2) diam A

LEMMA 4.4

i) If A',A"EV and A', A"C Q*(A) then

(4.5) diam As' > -K diam A

and

(4.6) diam A' > - diam A"
-K

ii) Int Q*(A) is a domain

iii) If PE R(V) and (o C:Q* (A) then on A

pp

For any !%Cw p

2 2-2
(4.8) ID v < K (diam A) on A
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Proof. Let A'CQ*(A) then for some P'ER(D) we have A,A'g t,

hence

1 >1
(4.9) diam A' >_- diam w -1 diam A

-K p -KdinA

Further we have for A"Cw ,,
P

(4.10) diam A > - diam w, >_ diam A"

(4.9) and combination of (4.9)and (4.10) yield (4.5) and (4.6).

ii) We have to prove only that Q*(A) is connected. This follows

immediately from the Lemma 3.7.

iii) From Lemma 3.5 (ii) and (iii) we have 0 < v < 1 and so obviously
-p

Dp [ min diam A]-

SAC w
p

and

D2V [ min diam A] 2

AC W

(4.9) yields the Lemma.
so

Let K < 2 Denote

Q**(A) ={xEQ*(A)dist(xaQ*-3a) > diam A
) = +2
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LEMIA 4.5.

i) Let P C Q*(A) Then PEQ**(A)

ii) ACQ** (A)

iii) int Q**(A) is a domain.

Proof.

* L s0 +2
i) Assume that P Q**(A) then dist (P,aQ*-aQ) < diam A/2

Because v = 0 on Q*- Q , (4.7) leads obviously to a contradiction.p,

ii) Assume that A Q**(A) Then there is a vertex P* of A such

(So+2)
that dist (P*,3Q*-aQ) < (diam A) 2  Obviously w = v = i

on A . By the same argument as leading to (4.7) we see thai IDIuI I K(diam A) - ' .

Because w = 0 on aQ*- Q we have a contradiction.

iii) Let xEQ**(A) , xEA Cw . Then by Lemma 3.7 there exists sequenceo p

n
A AgI  .An = A such that V =int U A. is a domain. Because diam A. >

o '" j=O J

diam A by(4.2)it is readily seen that int Q**fnv is a domain. This leads
K

immediately to the desired result.

Let p J (Q*(A)) (analogously as D ) and J (Q**(A)). Then we have
p p p p p

LEMMA 4.6. There exists not more than Z*(k) (respectively Z**(k))

possible domains int p* (respectively int 0**)
p p

Proof. The first part of the lemma follows from Lemma 4.3 and is a

corallary. The second part follows by analogous argument when realizing that

P** is composed by squares with diam n/4 when n was introduced in the proof
p

of Lemma 4.3.
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5. THE APPROXIMATION PROPERTIES OF (D)

in this section we will analyze the approximation properties of M(D)

Let 7 be the mapping of C0(Q) onto M(D) such that (Hu)(P) =u(P),

PER(D) . By Lemma 3.5 we can write

flu =  u(P)v
PERM()

Further define the operator lQ * (L) mapping C0 (Q) into M(D) by

(5.1) FQ*(&) (u) =  Y u(P)v
PER (V) P

(II CQ*( \)
p

Clearly supp(EQ* (u)(u))CQ*(A) and

(5.2) !(* (A)(u) = (u) on A

For given AEV we define JA as the invertible affine transformation

of 7R2 onto TIR2  taking A into standard unit square [0,11 x [0,1] = S .

LEMMA 5.1. There exists a constant C dependent only on K such that

for any wEH2 () and P = 0,1

(5.3) IlwoJ 1 - (N* (A)w)Ol A1 <cj I nwoJ61I 2 (

(S) H (J Q**(A))
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Proof. By Sobolev imbedding theorem we have

(5.4) I1woJ A'I1f <C oA 1 2
C0 (3 Q**(A)) H QJQ**(A))AA

Because of Lemma 4.6 there are at most 7**(K) different domains J .7 A
A

where Z**(K) depends on K only. This shows that C in (5.4) depends on

K only.

Using (5.1), Lemma 4.4 and Lemma 4.5 i) we get

(5.5) IIIQAwo~H~CI1woJA'I
H (S) H (J AQ**(A))

where C depends on K only.

Since by Lemma 4.5 ACQ**(A)

(5.6) IIwoJ'I 11 z I 6o~I 2

Combining (5.5) and (5.6) we get the Lemma.

LEMA 5.2. There exists a constant C (dependent only on K) such that

for any woEH 2(Q~) and f- 0,1

(5.7) IwoJ- - (fl (6w)0Y1 (C w-T
AAH ?-Cs) AH 2(J Q**(A))

Proof. Suppose z is any function bilinear on Q** Then on A we

have H Q(A)~ z z and therefore
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--1 0 Q*(A) (w+z)) - wOjl (qQ*(A)w) -I(w+z)-J5 .(H (~ OJA1 wo - (L wA7
A A AA

and hence using lemnra 5.1 we get

lwoJ1 - Q*(A) C infllwoJ 8l-zl 2A W(&Q* A) 1I HI 9(s) z H2 (J Q**(A))
A

where z is an arbitrary bilinear function on J Q**(A)
A

Because by lemma 4.6 there is only a finite number (depending on K only)

of different JAQ**(A) , and by lenmma 4.5 any int JAQ**(A) is a domain, we

have (see e.g. [ 2 1, pp. ) that

Inflwo3--zH 2 < C w'-l 2
H (JAQ**(A)) H (JAQ**(A))

The theorem follows immediately.

Now we have

THEOREM 5.3. There exists a constant C depending only on K such that

2
for any AED, uEH ( i) and z = 0,1

2-9
(- < C(diam A) - ull 2

H (A) H(Q**(A))

Proof. Using (5.2) we obtain (5.8) from lemma 5.2 by standard scaling

argument.

THEOREM 5.4. Let uE H then for Z. 0,1
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(5.9) Ilu-UuH < Ch 2- (D)lwII 2

with C depending only on K

Proof. We have

S 2u-HuII2  
= 7 Hu-nul 2 < u2 2 ( 2 - k)

H (R) AEO H (A) A V H (Q**(A))

< C Y h2(2-Z(D) <hC y7 A(A)11u1 2  
2 (2

-9) (D)
AED H (Q*(A)) AED H (A)

where A(A) is the number of Q*(A') such that ACQ*(A') . Using lemma 4.1

we see that X(A) < MN < C(k) and so theorem 5.4 is proven.

Remark: In Theorems 5.3 and 5.4, the restriction uEH 22() can be weakened

to uEH 2(A) for every AEVD

Theorem 5.4 shows that M(D) has the same basic "interpolation" properties

as the usual finite element spaces. The spaces M(V) are more flexible than the

usual spaces defined on quadrilateral meshes. The space M(D) allows us to

make a refinement and still keep square elements. The restriction to K-meshes

is from a practical point not importanC. A more essential restriction is that

we deal only with squares. How to overcome this resctiction with respect to the

implementation and the theory will be discussed elsewhere.

The use of the spaces M(D) does ;eem to have a major advantage over tri-

angular elements because of programming and data management simplicity, expecially

when some form of automatic or adaptive mesh generator is envisaged. One mani-

festation of this is that the element can be uniquely defined by the binary
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expansion of the coordinates of its center, the length of such an expansion

indicating the size of the element. Since all the elements have moduli, a

scaling factor the same geometric shape, the calculation of the stiffness

matrix, etc. is simplified. In addition this seems to be important for the

practical effectiveness of the error estimation.

We shall analyze now the approximation properties of M(D) when uEH (Q).

Before being that, we introduce some notations. By p(x), x EIR 2 we denote

a molifier, a function with all derivatives continuous p(x) > 0 , p(x) = 0

for xl _ , tj(0) = 1 , and f p(x)dx = A . For c > 0 , let pE(x)

I R2

2 J(x/c)2- 2A

Let QCIR2 be an arbitrary bounded domain and Q its p-neighborhood.

For u defined on , we put

U = t F <

Obviously u is defined on Q

Further for any t EIR 2  It < 1, c < p let

t (x) = I(x+t)

Then u is also defined on 2 , and we have

H-H

Hu ( ) H (k)

iu u i . u ,Hi.)H(1
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I I Ht-ul I < CE1 l- 1lui
H(Q) H (Q)

with C independent on Q , u and c

Let us prove now

LEMMA 5.5. For every PER() , let a function w EH2 (Q) be given. Let

AED and ACw If
po

PER() P p

then for k = 0,1

(5.11) 1 w -WIl I C[(diam A)2-111w 1H +
Po H (A) Po H (Q**(A))

2
+ Y I --w +w I I (diam A)

PCR(P)i=O Po  P H (Q**(A))
P

Proof. Or A we have

W-- H vw + nY Vp[-W +w
PERM() p Po PE() Po p

SnQ*(A)w + 1Q*(A ) \ v [-w +w I
Po PER(.A) p  Po P

Using lemma 4.4 and Leibnitz's rule, we have for Z = 0,1,2
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(5.12) 'nQ**(A)# P PO I 09 (Q**/A) n0A)

C I I-w +w (diam A) 9

-i=0 Po P HI(Q**(A))

Therefore on A

w -W = w - Q*(A)w - Z v [-w Pw ] - [Q*(A)( Vp[W o+W p
P 0 PR p  oER (A)

- Y v I-w +wl)
PER (A) p P0  p

Applying theorem 5.3 and noting the remark after theorem 5.4, we get the lemma.

LEMMA 5.6. Let vEHI(IR2 ). Associate to every PER(D) a sector

t EIR ItpI 1 and a number such thatP 2 P p

p [AEP K.512

Let further

tP P
W * I 1' [

a nd

W=fl vw

PER(D) P p

K-
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Then for any AED and 9, = 0,1

[v-WII H (A) _C(diam A)H- I I H 1(Q**(A)) 2 P

(5.13) p = max A
p

p C Q*(A)

Proof. Let ACw and ACw . Then using lemma 4.4 we haveP0  P

A ,X < C(K) diam A. Using (5.10) we get for i = 0,1,2
P PO-

I1wP-W~ I 11 < C(diam A) '' I 1 '2P
o l~-plHi(Q**(A)) _H CiaA)-i v I([Q**(A)]2i

By lemma 5.5 we get readily the lemma.

LEMMA 5.7. Let p be defined by (5.13), then

[Q**(A)1 4 0 O CQ*(A)

The lemma follows easily from the definition.

THEOREM 5.8. Let uEHI () respectively H '( () Then for any D

with h(D) < E there exists wEM(D) respectively M(D) NfHIF(S) such that

for all AED and Z. = 0,1

(5.14) )  c(diam A)1-Z1 lullH (A C~dam ~HI(Q*(A))
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with C independent of D, u and A

Proof. The extension of u onto a neighborhood Q? , has the properties

listed in theorem 2.1. Denote by [Q**(A)I 0 the 2P -neighborhood of Q**(A)O

P = min[o,o/2B] where p is defined by (5.13) and 6 was introduced in

Theorem 2.1. Then bv lemma 5.7 and theorem 2.1

lull 2p)  -- Ci lull 4 < CH lul I
H (rQ**(,A) H ([Q**(A) ]q)f) H W[Q*(A)I

Let uEH I N). Select t = 0 in Lemma 5.6 for all PER(D) Then
P

for W constructed in Lemma 5.6 we have WEM(V) and

I l <C lull 1 < clull
111-Wl HI( ) - HI[(Q**(A)2P - H I[Q*(A)]

and the first pnrt of the theorem is proven.

We have now to show that when uEH (2) then we can choose W so

that W(P) = 0 for all PER(D), PEr . To every PER(), PF , we take

t = 0 . If PECQ, PEF , PE i' then we take t the outward unit normalp P

(if P is a corner of ;2 then the normal is bisecting the outside angle).

If PElf' then iL is easy to see that we can select vector t (pointing inP

to the sector S?,, in Fig. 2.1) and not necessarily of the unit length such

that w (P) = 0 also. This finishes the proof.
P

Finally we prove

THEOREM 5.9. Let uEH k() [respectively H (12), H' (O))]. Then there

exists wEM(D) respectively M(D) n i1(1) respectively M(V)nHl'.(0) such

that

I
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(5.15) Y 11v p(uw)Ii2 I C 11U11
-PER\VD) H (Q2) H (Q2)

with the constant C dependent only on K

Proof. By Theorem 5.8 we see that for any LED and Y. 0,1

(5.16) Iuw < C(diam) -IuI 1
H (A) H(Q*(A))

and applying Leibnitz's rule and lemma 4.4, we obtain

(5.17) 1iv p(u-w) 1(A C H 1 (*(

for all POER(V) such that W pC Q*(A) .By lemma 4.1 there are not more than

M(K) such nodes so we have

Y 1iv (u-w)ii 2 1 v (u-w)i 2 C(K)Iiuji 2
1

PERMV ~ H (A) PERMV H (A) H (Q*(A))
W )Q

p

and therefore

(5.18) Y 11v (u-w)jj 21 C (K) I IjlI2l
PERM(V p H (Q) NED H (Q*(A))

By lemma 4.1 there are not more than C(K) different A'4EV such that

Q*(A')flA and so (5.18) yields (5.15).
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Remark to Theorem 5.9. Assume now that int supp u = . Then

supp w U
PER (D) P

p

This observation follows immediately from (5.16).

Remark: Theorem 5.9 is closely related to (3.1) of [ 9 ] hich is an

essential part of the a-posteriori error analysis.

I
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6. THE MODEL PROBLEM, ITS FINITE ELEMENT SOLUTION

AND THE BASIC A-POSTERIORI ESTIMATE

As a model problem we will discuss the case of plane elasticity for a

body, homogeneous and isotropic on every Qk making up the domain Q
o1

Let H (Q)CH.CH (Q) i = 1,2 where H. = HI'Fi(Q) as defined in1 1

Section 2.

Let H0 = H lx H 2  with u = (ulu 2 ) and consider on H0 x H0  the

following bilinear form

au Dv au vI 81 1V u2 v2

(6.1) B(u,v) = B(u,u 2 ;V1 ,v2) = [ A+2)( 1 + u2 2) +
2 2 x ax 3x 3

Q1 1 2 2

1+ 2 _u 1 Dv2 u 3v2 +u2 3v 1+ Ii + +__)) + 3--) dx

2  2+ 1 1 2 x2 0 x

We assume that A and 0 are positive and constant on every Qk of

The constants X , p are the usual Lam6 constants.

We will assume that there exist constants 0 < CIC 2 < such that

for any u EH 0

(6.2H1 lull 1 < B(uu) < c2 1 ull
(6.2) CII ]uI I( - - I(ll

H ()H (02)

with

11ul2 = ilUllI + Ilu2l 2

Hl(Q) H(Q) Hl(Q)
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Obviously B(u,v)= B(v,u) and IB(u,v)I < CjuM 1 VII 1 There-

fore on Ho , B(u,v) is a scalar product with the energy norm

(6.3) B(Lo ,I)(6.) K = H(u,u)

(6.2) shows that the en r y norm i I is eq, ivalent with Hull

The prob [em P(H, w,,) wEllI (2) x H1 (%) g EllO(Q) x H0 (Q) consists

of finding u E H(.) x Hl(2) such that u- wEll and0

(6.4) B ki, v) = Fv) Vv vE H0

where wt havo writ ten

(S ,v) =(glv + g 2 v2)dx

It follow,'s by the -t andard theory that u exists and is uniquely determined.

The finct ion u wi ll he called the exact solution of the problem P

iet now ('( ) n ( fl ,(9), i = 1,2 and M (V) = ,M1() x M 2 (D)1

Assutmin4 tha;t wx C I M()) in the problem P(H 0w,g) , the finite element

solution I of P with respect to ki consists of finding UiE M(D) x M(D)

such that U-W 4E,-,t0 (V) and

(6.5) B([;,v) - (g,v), 9vEM0 (D)

Just as for the exact solution it follows that the finite element solution U

exists and is tiniquely determined.
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Finally we denote by e = U - u the error of the finite element solution.

We will be interested in an a-posteriori estimate of the norm lell ,

or some norm equivalent to it. We will design an estimator E --

depending only on the known finite element solution -- which will be related

to the error norm. As estimator E is called an upper respective to lower

estimator if there exist constants AU respectively AL independent of D

and u , U such that

, 1jell , AUE

respective

ALE< I ell

THEOREM 6.1. Let wEM() u be the exact solution of the problem

P(H ,w,g) and U its finite element solution with respect to M . Then

there exist strictly positive constants CO, C1 depending only on K

X and P such that

(6.6) CO ) B(nr p) I I Iej 2 < C1  ' B(n ,T )
P4ER(D) -PER(D) _ p

where

(6.7) np C H(uip) = {vE5 lo v=O on -0 }

and

(6.8) B(npV) = B(e,v), /vEH(, )
p p
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Proof. It follows from the definiti_ n ef U and u that

B(e;v) = O, VvE 0

and therefore

B(e,e) = B(e,e-v) = B(e, I v (e-v)) = B(n p,'Vp(e-v))

PER(D) p  FER D)

Using Schwarz's inequality we get

B~e ,) '/ '' I~ , .5 [ ) II ll 2  112
B_.e r/ v ] I (e-V) I r iu 112

-. C7R (0) PER()

1/2

Y 11ivp (e-v) 
l1121

PER)

By (6.2)

(e v 2 , '11 v
v (e-v)1,i - V (e-v)'-( 1

pp H(2

and therefore by Theorem 5.9 for a proper choice of v

(e-v) 1112 ", 12

PiE ((V C1l1elllP'Cz(vJ) f I1(,

Hence wE, have

' 2

whichl': 14 p r no(D) of 1])

which proves right hand side of{0.6).
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Let us prove now the left hand side of (6.6). Define

w. Y n , j 1..... J, where3 PEX. p
3

X are the sets introduced in lemma 4.2. We have now

(6.9) B(e,w.) = Z B(e,n ) = B(n n)i:PE , p P le pE p

Because for P # Q , P,Q~x c nt (supp p) nint (supp nQ) = we have

B(nlpflQ) = 0 and hence

(6.10) B(wj,w) W i B(n ,np)
PE)j

Further

IB(c,w )I 3'1e11! M wjl! l

and hence using (6.9) and (6.10) we get

HIwjl 2 n H2 IIIl HIIwjIII
PEYj p

and hence

Iel12 H 2

PEX 
p

Because j ranges over ,. I we get
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(6.11) 2 _

PER (D) p

By lemma 4.2 J < L(k) and therefore (6.11) proves the left side of (6.6).

We have proven in Theorem 6 that the estimator

2- (U) B(n ,r )

PER(D) P

is simultaneously on upper and lower estimators. The individual terms n

PP
are determined locally on separate stars w~ . Let us underline that al-

p

though the unknown error e is present in the definition of n in (6.8)P

we have not to know it. In fact

B(e,v) = B(U-u,v) = B(U,v) - B(u,v) = B(U,v) - (q,v)

Remark. The proof of the theorem 6.1 follows very closely the ideas

in [9 1 .

We assumed in Theorem 6.1 that wEM(D) . It is obvious that

w = (wlW 2 ) influences the solution only by its values at the boundary

SE more exactly on F . In general when wiM(D) we replace w by

wEM(D) and estimate the norm of the solution of the problem P(H0 w-wO)

Usually it is easy to explicitly construct a function zEH l(R) x HI (a)

z (w-w) on Pi , i = 1,2 and the desired estimate is then simply IfzIIl
i i 1

In practical cases we can expect that I Hzlt I is much smaller than Illelill

K
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7. THE A-POSTERIORI ERROR ESTIMATE

Let us denote by Q any of the squares comprising the domain Q and

let 0 be the unit square [0,11 x F0,11 . Assume that ziEHl (Qo ) I

i = 1,...,n are given and denote by Z the linear span of zi, i = l,...n.

Definition 7.1 Let o > 0 , E > 0 . By (Z,p,E,Q) we denote the

family of functions OEH0 (Q) such that for any square S = [al,a 1 +h ] x

[a2 ,a2+hJCQ the following properties are fulfilled

a) FE H1 (S)

5) There exists ° = z(h- (x-a)), zEZ and constant M (both depending

on ) such that

i) H < M h
0 Ho(S) -

ii) I < M

H (S)

Let us illustrate our definition by a few examples.

(i) Let Z be the set of all polynomials of degree less than or equal

to n . Then any polynomial of degree < n on Q belongs to the family

T(Z,n, -,Q) with P and - arbitrary.

ii) Let Z be the set of guadratic polynomials. Then = sin x

belongs to the family ll(Z,p,E,Q) for E < 1 and some suitably chosen P
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iii) The family is typically characterized by Z being the poly-

nomials of degree _ m ,say, and then we take F0 to he a suitable Taylor

expansion of . Then 0) and (ii) are more or less standard, and (iii)

states that is not 'degenerate".

LEMMA 7.1. Suppose that f4ET(Z,p,E,Q) then there exists C (depen-

dent on (Z,P,c,Q), such that for any square S' CQ

(7.1) If < C(dlam S)- inf 11f-dII 0
H(S) d = constant H (S)

functions on S

Proof. 1) Define FER (Q ) by

F(x) =f(a + hx)

Now by the assumption there exists F 0(x)4EZ such that

(7.2) jIF-F 11 < m
0H 

0 )

(7.3) IF-F 1 10)<M

(7.4) IF 011 Q)> )Mh-

Denote now by F respectively F 0the average of F respective to F 0on

Q0 . Then ve have

(7.5) (F -F)-F j F-F I
0 0 H (Q ) 0H0(O
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because F-F is the H0  projection onto the set of constant functions on
0

Q0

Because Z is finite dimensional space there exists C (dependent on

Z ) such that

(7.6) IF0 I IF-Fl 1 CI IF -:FII
0 H IQN) 0 0 H 1 (Q0) 00 H 0 (Q0)

* and hence combining (7.4), (7.5) and (7.6) we get

M < h p IF 0 H I Q ) < Ch E i IJF 0- -f o H o o

and

II(F-F F )JJGP h: JIIF -i I

0 0 H 0(Q 0)0 H0(Qo)

On the other hand

IIF-FII H 0  JI1F 0-T-110  - II(F-F )-(F--F)lI

and hence for CP'- 'h < 1/2 we have

(7.7) H(Q)I>-] -F

H0(o 2 0H0 00

Further from (7.3) and (7.4)



- -j __ _ _ _ _

46

(7.8) Fl H 1  IF IN + IF -FI (Qo) < IFoH(Qo) H (Qo) HQ) OT(Qo)

+ M < IFoHI (1 + P- 1hh) < 21F 1-- (Qo) - oHI (Qo)

for h P-1 I

Therefore by (7.6), (7.7) and (7.8), we have

IFI < 21F 0  o < 2CIIFo-Fo"1 H < 4C 1 IF-F lH O(Q - HI(Q) -HO(Qo) H(Qo)

so upon rescaling back to S (7.1) is proven in the case diam S < h (p,c,Z)
-0

2) Suppose now that diam S > h (p,,Z). Put
0

= [L--h]TNT + 1

NT

where ['] denotes as before the integral part. Clearly we can divide
2 2

S into 2 congruent squares Si, i = 2,...,o with

diam Si - d iam S Sd iam S. = - < h
G -0

Thus

2 2

2 2 diam S - 2 a 2= IZJ i, < C( j infI~f-d I I

H I(S) = =1 H C (S ) i= H0 (Si )
0 d=constant

funct ion

< C
2 (diam S)-2 

inf lIf-dI 
20

d=constant H (S)
function
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But o < 1 + diam Q < C and the result follows.- h
0

k k
We introduce the family (Z,p,E,Q) for Q = Q with Q as in section

k a
2. Because Q consists of a finite number of Q it is clear that we can

ak
extend the family T into (2,0,c,2) so that the restriction on Q - Q k

is the family (Z,p,c,Q)

In what follows we will assume that we are concerned with problems P(How,g)

introduced in section 6 where g E (g1 'g2) , giE (ZP, ,P)

We shall discuss now the error estimate of section 6 in more detail. We

have shown in theorem 6.1 that the essential part of the estimate is the norm

of n which is defined on the star w In section 4 we introduced theP P

standard star 0 p (see lemma 4.3) as the image of (A under the mapping
P P

P

On Dp we will define now the space Hp = H X H2,p with

Hpp) = {v = (Vl,v2)EH (4 p) x H (p)lvOJp EH(wp) }

with 4 ) defined in (6.7).

In 6.1 we defined the bilinear form B . Let us define the form B
P

defined on H x H with the same expression as in (6.1) but with integra-
P p

tion over D , and A, ji instead of X, u,A = AOJ , Pj =

LEMMA 7.2. The bilinear form B is such that for any uEH ,

2 2
(7.9) C1 Iu I I( < B (u,u) <C 2 1 luII 1

H OP) -- H (pp p)

with constants u1 , I = 1,2 dependent only on A,' and K but independent

of P
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Proof. For each PER(V) there are line segments P(i)C (i = 1,2)P

both being edges of standard P elements of 1 and such that uC H p u. = 0p p

on F . Applying now lemma 4.3 we see that there are only finite number

of different cases of the domains 4 and the line segments F(i) for eachP

the Korn inequality holds. Therefore (7.9) holds with 1'1 replacing
H(p)

1 Because these two norms are equivalent with constants depending

H (1) )
on ( ) , ( we get (7.9) immediately when using again lemma 4.3.

Denote now by M p(Dp ) the set of all uEH p(D) being bilinear on

every standard P element of the standard star 4 p Further we denote

p2
p p-I p gpg ,)eeoJ- p u o Uo-I gi 9 gi° J i gi = gi (d i a m A

i = 1,2

where e, u, U, g were defined in section 6.

We have

B p(e,v) = 0, VvCM p(P)

and

B (e,v) = B (6,v) - B (uv)
p p p

with

2
B p(u,v) = (giv) 2p' VvH

-- ~_ 2pIIilli l I



I

By integration by parts we get

2 I-2 rJiv
B p(',v) = l l ' i,j(U)n 'v 'ds - Li(U)vidx

p 3A A

where (nln 2) is the unit normal on each edge of 3A pointing outward from

A and

UI U aU2  + F oi a b 3
X(-+- +i +

Rx 1 ax 2  Lax.i ax.
21

a2
L I(U) = (+P) 2

12 U ( -X-u x ax12L 2(U) =0(+1) XlI X 2

Let F (respective F2 ,) be the union of all vertical horizontal)

edges of all ACS . Then
p

2 2
(7.10) B (ev) = [-([gi+Li(U)],v + (U)),Vj) L(F)

i=l 2O p j=l i ij I2

where J. indicates the jump in a function across F. The jump J. has1 1

an obvious sense if the relevant edge r of A is inside P . Ifp

rCa9p we have to distinguish the case of whether vEHI p - v = 0 on r
p 2 1 p i

or not. If all v. = 0 on F we will take the jump to be zero. If it is

not the case, then a is set equal to zero outside * , and the jump

i6 taken the usual sense. This convention will be used through the paper.

Because U is bilinear on every A E and Au are constant on A

-we see that Li(U )  are constant on every A and J i(ai, (U)) are linear on

every edge of a
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Putting r ) 8 j-1 (6.8) gives
P p P

(7.11) Bp (J ,v) = B p(e,v) VvH p( p)

Using Lemma 7.2 and proceeding in the standard fashion it is easily seen

that rip is the unique Hp (( p) function satisfying (7.11).

LEMMA 7.3. There exists a constant C dependent only on K and j ,

such that

2 2
(7.12) In II [L + 20

H p i= H (ID j=l Hi (r)

p _ _ _ _ I__ _ _ _ _ _ _ _ _ _ _

Proof. The set of possible S 's i, finite. Therefore we have by Sobolev
p

imbedding theorem

(7.13) Itvl0 <cjjv11 ,HO(fi) -- Hl(4p)

p

with C depending only on K . (7.13) with the Lemma 7.2 and Schwarz'§ Inequality

leads to the desired result.

LEMMA 7.4. Assume that gi (Z,p,c,Q) then

2
(1> C , (igi+L (U)I + I I )J(di(u))11(7.14) 1 HI,(. ) i=l H°(0 ) j=l H0 (i

p p

wnere C depends only on K , the family 1 and X,
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Proof. Suppose that the constant C does not exist. Then there exist

for each n =1,2,3,

i) a K-meshD[n

ii) P, [n] ]ER(V [n])

iii) Ujn EH 1 ((D 1  with U[n being bilinear on each AES

[n]n

iv) g. Cn L (p4n) with -In]j < in]A7 for
p~ () H(A)C O

any A ES p~ 'w ith C independent of n and g denotes the

aveageofp[n] o

(n]

such that the unique solution n [C'H p~](0 4 ) of

-[n 2 ~ ] pn

(7.15) B p~n n ,V) [ I(g[]+ (U nj),v. i L )

2 ~n

2 3i( (U n)),v) VEH ( )+ Y 0 1 (a i~~j [n] * ~](Dp[n]
j=1 L2( 1ml

satisfieg

2

+ I (aYi~ (U[n]I))1I)0 [n
j=1 H ( ii

[n] i[m n] r)Putting r. = + L iU )
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[^In].(o. (U )

then Without loss of generality we can assume

2 2 n
(7.17) 0' I~ H( + 0[]~ In]

H ( p~n]) 1=H(

and

(7.18) Iin<C jr~ A- A-[ n]1 1  IVAS
1 H (A) H (A) p

The inequality (7.18) follows from the assumption that g.E C(Z,p,e,Q) and that
In]

L i (U is constant on A . From (7.17) we have

H 1 H(A) H (A) H ((P)

Using Lemma 4.3 we may assume that (n = S [n ,H ((D ) H
p~)p n] p n]p n

Further by Rellich's lemma, (7.18) and (7.19), we may also assume that

[n]o
r. r in fl(l')

Now I]is linear on each edge of AIES and so we may assume also that
'I,]

iLo i. i n H0 (f') where F is the union of all edges of ACS~. (7.17)

yielids

2 2
(7.20) 0 1. 'i + 1I. 1 )

1=1 if 0 (1') j=1 H H(r),

I. (7.15), (7.16) and (7.20) leads now to thle contradiction.
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LEMMA 7.5. Let pER(V) be such that v C v ,v )CEH~w ) Csee(6.7))

and W CQ k for some k4EZ .Then

< + Ili a (U)ll
<C x l - gil 01 "PH (4 ) =1 H OD jl 1 H (r.)

where g. restricted t6 any AC ( is the average value of g on A

Proof. The proof will be by contradiction. Suppose the lemma does not

hold, Then for each n = 1,2,3,... we can find V En],% I[n] , Un]and

g~n]I as in i), iii), and iv) of the proof of lemma 7.4 when ii) is replaced
I

by ii')

ii' Cv IE(V 4E 1w W : for some k4EZ
p p

and (because of (7.10) and B ( 6'v) =0)

(7.21) ( [ n + L ( ) p[ E l p I n ) H 0 O

I[n]
j p p [nU

In 
i[ 

] 
In] =

jn]l [in,(, [nl A n

H ((D pn]) H iDp[nI

2 ^n
+ j .l l H (r 1' In)]



As in the proof of the previous theorem, by use of lemma 4.3 we can assume

that

a) S in] = S , ,p[n] 
= P ' Fi,pn]= = i , Hp[n] = H are independent

~p
of n

I) C Qk for some k EZ where k is independent of n (because
p[111 0 0p[

S 'Zo  is finite).

Now a), 3) yield that also B[](.,.) = B(-,-) does not depend on n

r) ff[n]I 1 -l1

H ((P)

Let us set now

[n] -In] [n]
r = g i + Iin)

ij i t (U,]

Now by (7.21) and y we have

jI i o[n ] A -- In ] 1V A 4

(7.23)

H (r i) _

It is easily demonstrated that

2 in^ (n]n)i 2

(7.24) I I11L(f )  - L I < r II jl (
i=1 H (') -i,j-1 H°(Fi
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and so we must have

(7.25) n.([Ifn ) - L. ([0) 0
1 1 0

*ii  By (7.23), using lemma 7.1 Rellich's lemma and the fact that S is finite,

we may assume that

(7.26) r - r. in (')
1 l

n 0

([72 g " n 3/4( wh

Because of lemma 7 . we see that. g also in H (1) where

SH3/4 () is the usual space of fractional derivatives. Now by (7.23) again we

see that r. and g. must be constant on each AE . Further by lemma 4.3(i)1I

3/4 "Nand the fact that g HEH ('k) we see that g. is in fact constant over all of

By (7.26) and (7.27), it follows that .(U1 [ ) converges in H(4) and by1

(7.25) it must converge to a constant on . This follows that r. is a constant
1

on .

By (7.21) in the limit we see that

(r v ]Jp n0
Vp~n] pin] H"(~

Bv lemma 3.5 we have v . 0 and vpn] > 0 on a set of positive measure.

Thus we conctude that r i = ()
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Returning to 7.15, we see that 1Jil,0 in 11(~ which contradicts -Y

Now we ret urn tc' tip' quest ion o)f the a-posterior! (ost imate. Civen a

mesh D and the corresponding finite element solution U) ns in (6.5),

we will associate to every tAEO the error indicator ri (A) defined by

(728 (A) =)I{diam A X lcj l + (diam A)19 I

1=1 j=l 11 3A) H (A)

where

L (U) = \lu 12
*3x 3x

1 2

L (U) 0 (+0~ x3

1 2 X. Jx.

and J 0J2) indicates the jump across the vertical edges, 3 A (horizontal

edges, 22A ) of A .We use the same convention as before, i.e. if the edge

r c ,Q is such that v EH.i - v.i = C) on F then the jump Jim is ciot taken

into consideration. If it is not the case, we take the jump J.. .) 0 =, ~

The estimator E then is defined

Y j(A)

THEOREM 7.6. The estimator Eis an upper and lower estimator, i.e. there

exists c1 , c 2 dependent only on , uS and 1 but not u and D , such
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that the error of the finite element solution of the problem P(H ,wg)

wE[M(D)]2, gE (Z,ftc) satisfies the estimate

(7.30) CE l ell 2 cE

Before proving the theorem let us prove two simple lemma.

LEMMA 7.7. Suppose P is an edge of some . Then

a) Either (i) FC;Q

or (ii) 3 PC R(D)

such that AC w but Faw

6) rNA' # 0 for at most X elements A'E1 where X depends only

on K

Proof.

x) By lemma 3.5 we have Ev = 1 , so certainly for some PER(V)P

v > 0 at the midpoint of F . Since v is a non negative andlinearon r,P p

then v > 0 on r except perhaps at an endpoint. The result is then immediatep

upon noting that v is continuous and inducing lemma 3.6.p

() The number of such elements is clearly bounded by the number with non

empty intersection with A . Lemma 4.1 iii) then gives the result

LEMMA 7.8. Suppose al,...,am are non negative real numbers and let

be a mapping from {l,. .. ,n} { .. ,m} such that
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i) is onto

ii) 3 M ' 0 such that Vi < j < m the set {ill < i < n, a(i) = j} has

at most M elements then

m n m

Sa i < a (i) < M a
j-l -i j=l

The lemma is obvious.

Proof of the Theorem 7.6. Using a scaling argument applied to lemma 7.3 and

7.4 we obtain

2 2 2

(7.31) Ilrp 2 7 [(diam) +g+L.(U) I 2
p 1 ( ) .C I? i IIl H ° ( A )

p

+ dia a 7 IJi(ou (U)) II2=1 t .A)

where J indicates that we use the jump across edges A which are on aw
1 

p

but within Q, equal to zero. Adding over all PER(D) and using lemma 7.8

and lemma 4.1, we are in a situation covered by lemma 7.7 and the result follows.

Before formulating the next theorem, we prove

LEMMA 7.10. Let" R*(D) = {eCR() v 0 on U 9k Then

P kE Z
0

(7.32) U .

Pe*(D) p
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Proof. The lemma follows from lemma 3.2 applied to each Qk separately

which shows that any AED has at least one vertex P say, being a regular node

k klocated in the interior of a Q0 . Clearly the corresponding lopCQ , and so

Pep*(O)

Let us introduce now another error indicator rI(A)

2 2 2 2 A-

(7.33) n'(A) = {diam A II }Jii u .0 2  + (diam A)21g i-g 1 2 }
Z=I j=l H.0 )(a H (A)

where gi is the average value of gi on and the corresponding error

estimator

(7.34) E n 2 (A)Aev i

THEOREM 7.11. The estimator (7.34) is also an upper and lower estimator.

Proof. Let P ER*(D) . Then using lemma 7.5 and 7.4, we see that for any

A C(1)
p

2 1g2 2 -
(7.35) iY (diam A)2gi+ti(ll2 ( <  C I ((diam A) 1i-gil 0 +

i=1 H (A) LEW i=1 H (A)
p

2 12

+diam A H o (U)II )
j=l H°(ai A)

We have shown in lemma 4.1 that any A is contained in not more than M(K)

stars , Lemma 7.10 shows that every A is contained at least in one wp p
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P t R* (0) ind therefore summing (7. 35) over a I I (\EV we see immediately that

E <_ CF which yields that EL is an uipper estimator. Because EL < E E is clearly

a lower estimator.

Lemma 7.12. There exist C.I > 0 , i = 1,2 such that

(7.6)2( (4 2-

(736 CI i *j(u) < diam A Y [i a .(U)(xz ) <

C 2  (U)i j 2
H 0 A)

where x are the vertices of A

-Proof. The inequality (7.36) follows immediately from the fact that

J ..ij(C') is lioear on every edge ofA

LenimA 7.12 allows us to introduce another error indicator,

2 4 A 2 211 tA 2
(7.37) rl U) {diam A) ~ [) Y [Jo (11) (X) + (diam A) f 8 gll

* and error estimator

(7.38) EP= <A

and we hiavte from I emma 7. 1 2 and Theorem 7 . 11

THEOREM 7.13. The estimator (7.38) is an upper and lower estimator.
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8. THE ASYMPTOTIC ESTIMATE

We have shown in the previous section that the estimator E introduced in

(7.35) and (7.34) is under the proper assumptions simultaneously an upper and

lower estimator.

In this section we will analyze an.estimator E , which will be equivalent

with E i.e. there exist C and C so that

1 2

(8.1) C2 E < E < ClE

and will be asymptotically exact for the energy norm IH'H introduced in (6.3).

*We shall say that an estimator E is asymptotically exact with respect to the

energy norm if

E
(8.2) 1 as 1hell 0

To show (8.2) we have to make various assumptions about the solution u aid

the meshes in addition to the assumption that the mesh Is a K-mesh.

Suppose D(2) is a mesh and let V'CV satisf'

I) If AED' , diam A = h , h > 0

ii) if AE' then all vertices of A are proper nodes.

If (I), and (ii) hold then we shall say that D' is uniform. If only

(i) holds then we will say that D' has uniform size.

Suppose now that A C B C Q then we shall write A < B if

2P(A,B) = dist(A,T2-B) > 0

Let D C D(Q) then we will write0
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:kfI ( j 'I~.Ih Cm t- st coit 'Ii nod i n V We will write D"' < V' if

F i Ila I Y' denot e 1y)v (; tihe set of tfunct ions of I M D)12 restricted

to 'N and M C:~ )Al( ~ the set of functions which are zero at

We shal 1 i.iake uise of the fol lowinrg version of Theorem 5. 2 of 111

THEOREM1 8.1. Le t: 0' C: lie a uniform mesh. Assume that the bilinear

f orm B def inted i n (6. 1) h)as c ons tan t coe ff ic ient s on f(D') and let V"< V'

Then if III.1 %) I((') I' satisfies

(8.3) , ) A

for aILl :.M( C,0') then

(8.4) C' in .- x
1~~~~~~~~~~~ NO2.' '1 S(' ((" ,() 0 l('))+

+ - Q + A

wi th C dependent only on tire hi I nea r form (6. 1) (and not on P.(V") , Fl ('I))

Suippmoe niow that V'C 0 has uni form mesh si ze and let V" < D' .Then

weI c'ar defi . diFfe rnon c e erator I'. wich maps H (WV'))into H (Q2 (9I))

s o r t, ht

(li) (x) 21ir 1 rr(x+h v )t(X-ite )
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with h being the diameter of the elements of Q' and ei  the coordinate

unit vector.

We have then the following theorem which follows easily from Theorem

6.2 of [ ]

THEOREM 8.2. Suppose that u. and U. j 1,2 are the components of the* 1

exact respective finite element solution of the problem P(Ho,w,g) as defined in

Section 6.

Assume further that V" < D', 'CD are as above, that the bilinear form

B of (6.1) has constant coefficients on Q(V') and u.EH 3 (S(D')) , j = 1,2

Then if D"' < D" it follows that for D. =
i ax. we have

(8.5) Dh kH3 +

(("')) k=l H (Q(D'))

(Q(D"'),Q(D")) IlUk-UkIHO(Q(D,))

2
Denote now for any square QCW2 by Hi(Q) the space of all functions which

are of the form axi  on Q (when referred to an origin placed at the center

of A)

Now we prove

THEOREM 8.3. Using the same notation as in Theorem 8.2 then for each

A ED" there exists AiEHi(A) i,j = 1,2 such that

( 8 . 6 - . C p -1  2), 2( " ) ) 2
(8.6) DP"' 'i  H(("')) kl

i~H k-lo ()
hD1t.u 2 ~ V + Hu H0 ((")

{hIIukII H3(D I -UII ( WI
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Proof. For any w EM( .(V D")) we lave

(8.7) B(U - iu,w) B(u-: u,w) , (1->u,w)

where HuE ,(D) is such that (!u) (x) = u(x) for any xE R(), and B is the

restriction of B to A

On each A E 0" , B. (u-U u,w) is the sum ol terms of the form

S ... ( .0 - u ) flu dx

for i ,,k, 1 and some Constant . Consider first the terms

)W

- 'U

ft f ¢,i- . tO '-,C t at for 1. a q uid ri tic funct ion the above expression is

eq ,il, to zero. le rcfore b- standard -irgument we get

(8.8) ) -Ch-II ! .I 1
.X , 1 1 n>Al (A)

with C idojpetndL d t ot ' anl 1,w .

Let us cukria id l
"

t now t lhe tIrr

(8.9) - ( .- u.) ... dx, k
Ix ' k  1 I fX ,

Obviously we need oTn analyse the case k =1 , =2

* I II ......... . I.. .
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Using the notation as shown in Figure 8.1 we inteyr it.. b% parts in (8.9)

N EN

x2

X1

s- r, s"

Figure 8.1. The notation of an element.

and get

3W.
u - dx = jd-,- 1 (u-Hnu.)w dx

3x. (u-fu. 2 ax 1
r r

f 2 N+ aw.

- ( 2 u. flu,)w dx =(u.fu)~ U )W (u nlu ax dx1

A FN

S+
(u u w + (uRu aw i dx2 ( ~ Wd

S-iiI- If i x1 1 axa2

Because for a quadratic function we have 1 (g-fg) = 0 we conclude
1 O2

( (u7u) dx + (u -fluj) i dx I

A N- S

< Ch2 jul 3 Jwi jI

H (A) H (A)
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iw.
t I t (a I c L,11t 11 .I u IS !:i t i on on (U') and i~

1w 3

con t inutius on aill io r izoln taI l e Fe of am ldx- 0 onf the horizontal edges

of 0" U)' w gt hy 1d1d in1g (8.10l) ovt ac rl ED

j3 i

(8. i, ' I ind (I .1 vi c i

if H( (V''))

(8. G)4 -i - + 0

-'H

ar~d- **~ i ii t
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Let us consider further D.(u-fnu.) on AED"' Refering to Figure 8.2

1 *)

4
i z

X2)

h

Figure 8.2. The notation of an element.

for any wCH 2(A) we choose = J wEH(A) so that

((

i (Z 
( i ) = w(Z

( i )

where Z (i)  are the midpoints of the particular sides as shown in Figure 8.2.

For u. = g a quardatic function , we can easily check thatJ

D.(g-.g) = 3 Dig

And so by the usual arguments we have that for some A iEHI(A)

A 2
(8.15) ID (uJ u <) Ch2u 13(

Summing over all ACO"' we obtain



68

Ol' u C'f 3LE" i ((.rr ' )) H (t ( ' ;)

Comhhiig, no. (C4. ) ind (8.13) w got the desired result.

YIK~lA .+ Li t i lu Sf I _! nutL ion ois in Theorem 8.3 we get for kjj

2
I +

I( (0*"' )

>H

I u u

0" 4 -

,G (D")}

'Nw 1%7( hj v' ir :0: E i''

7) (+) 1+ -U.- , .. ,

+. O+A

It A

." k u I, 1 1, ()L I' i I ()j jA 
0 A
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It is easy to see that for 9 # k we have 0 Summing (8.17)
i , 

Smi (8.17 
(A)

over all A D"'" and using Theorem 8.3 we get

(8.18) (D.(u -U ),Dk(ui Ui))I < C(( 2 +4( 2 A i O )l/2

H (( )) ij=l AED"' H (A)

Using once more Theorem 8.3, we get

(8.19) II Yj A l 0O < C[ -+1 IDi(uj-U.) II 0
AEO"' H, (,,,)) (V"' ))

Using now Theorem 8.1 for = u-U we have

2 -(8.20) D i(u I° < C( 2 {h 1u + 1 uU) 0

j- )) H j=1 Q (D")) H(Q("))

and combining now (8.18), (8.19), and (8.20), we obtain the desired result.

LEMMA 8.5. Let S be the square as in Figure 8.1 with side length h

Then for any

f = ax I + ex I xl2 + d

we have

(8.21) Ilaxl1i2 - 1h22+ 2- 2

HOs 12 (f 2 (N+)+f 2 (N-)+f 2(S-)+f 2 (S +))I

<M Ilbx2+cxlx2+dl I2: - HO(s)

with M Independent of h, a, b, c, d.
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Proof. By simple computation we gel

la 1L( = a 21 h4

axII (S) 12

f 2(N)+f 2(N-)+f2 (S-)+f 2(S
+ ) (a2+b2 4- + 4d 2)h2

4

and

h4 (b 2 + c- + 4d2 ) < MI Ibx 2 + cx x2 +d 1 12
-- H (S)

which immediately yictds (8.20).

TlEOR1I M 8.6. Fsi!)g the same notation as in Theorem 8.2 we get

(8.22) 1 .u.U 2 2 .(D"' < iC 21324 hph2 +.! j Uo H~( ' (,,)) 'io k=l H (Q(V")

-2 Uk '' 2 + (r'- h+f) 2h 2 3 d -Uk ' o

ffN(O")) (2)2'(D")) H ((D"))

wh k, re

9

(8..1) '''(48 Ih!-.2 (A) (N-) + J 2,(A)(N+ )  + 2 (J)(S-) + J.2 (A)(S+)1_ i'l.. 48 " .- ,j ,

and 3.. (A)(N) is the jump in - with ith coordinate direction at the
ar 3i, x. _ _ _ _ _ _ _ _ _

point N of A (i.e. the value of the jump across w at N) and analogously

for the other vertices.
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Proof. We have

(8.24) D.(u.-U.) (D.u.-ThU.) + (Th.U.-D.U.)1 1 ] 11 I 11 ,

By Theorem 8.2 we get

(8.25) ID.u. - T < C[ 2 (h 21k

1H 1 (2(D"')) k=l H (Q(D'))

+ [((D"' ),,(D")) ]-l IUkUkI

H (Q(D'))

Theorem 8.3 yields

A 2
(8.26) 11 (u.-U.) _ (u L . o < co- (Q(V"' ),n(D"))2

J ] - EV"' j5i H0 (Q(D'"))-- k=l

h2ukl3 + IIUk-tk IHO }=E1
(hH2 lUki IH3(0 (D") Ho (Q(D") E

Combining (8.24), (8.25) and (8.26) we get

(8.27) L -D1 U.- 4" . < C E1

I I I Edff i,i H0 (Q(D, ))

Simple computation shows that ThU-D U is bilinear on each LEV"' . For sake
For isi

of definitions and without loss of any generality let us suppose that i i.

hConsider now T U j-D U Using notation shown in Figure 8.3 we have

for F ( E E
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Figure 8.3. The scheme of the notation.

(8.28) (Th U -D U U)(F) =2h- [U (Fl +hJ) - U( l-h,)] - [U.) M-U.QF-h,& )]

=-J1 ,j(;

For 4EI'W we get analogously

(8.29) (Th U1 )J (

h
Let now ,, be the L2projection of (T IU j-D IU ) onto H .A Then fromI (8.27) we get

(8.30) I U -)1 U )l 2 + II4lH 2)
H (Q(V"')) AECV"' H 0(E)

tNow it is easy to see that for any bilinear function f on A ,f - ax 1 +

bx 2 + cX 1X2 + d (with coordinate origin in the center of A ) the L2  projec-

tion of f onto H (A) is exactly ax1 and so by lemma 8.5, (8.28) and (8.29)

we obtain
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%A 2 h2  2 2 + 2 +

(8.31) L I -j [ (N-) + + (S-) + 3 (S+)] +I H' (A) 48 E"' ,

h( 1 _TU D1 U _A€, '  A
O(]IIlj I ,  i o 0

(N(D"')

using now (8.27) and (8.30) we get

(8.32) ITh UDU I 2  2 (V,, + O(E2
lii.]~ H( Q(DY' 1,0()

Hence we have

(8.3 ) I ID (uj-Uj) i2  f (Thuj-DIU )+(D u Thu ) W

CH°Q (V') 1 2 1(D"')

IITh U-D U 1 1U2  + I ID Thu.I 2 +

Ho ,, J 1 .1 Ho(, ,,

+ rtl I D h I JIT h  _ D Ujl
ID IUH-T Uj I 0 (H') ((D" )

where -2 < a < 2

Further using (8.25) and (8.20)

(8.34) IIThU -D1 U.j H°  <_ ID 1(uj-Uj) H0 +
I H (Q(D")) H ( (D"'))

2

C(E + 2hl u 1 + 0 (Q((V"' D),Q(V"))
TIuj-D uj 1H0 (( ")) - j=1 H2 (('))

l. -u ].

Using now (8.32), (8.33), (8.34) and (8.25), we have
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2 2 2
(8.35) IIDI(Uj-Uj)IIHo (v , ) = t1 J1(1"') + O(E1 + El( Y hI ujII 3 +

H j=l H (Q(D'))

+ ( -l (D( ' ' , ( o ' ) ) u j U  )

and (8.35) yields almost immediately the theorem.

In section 6 and 7 we introduced various error indicators. See e.g.

theorems 7.11 and 7.12. It is obvious that we can have many equivalent error

indicators which would be simultaneously upper and lower ones. Theorem 8.6

enables us to design a special one, optimally suited to our purpose.

In (6.1) we introduced the basic bilinear form. Obviously we can write

TB(u,v) = [Dv]A[Du] where

[Du] E [DIU 1 ,D1u 2,D2u 1,D2u2 ]

and analogously Dv

The matrix A has then the form,

X+2p 0 0 A
A 1  AI

o 0 11 A12

AA A
0 u 0

X+20 A21 A22

Assume now that AED"' as in theorem 8.2. Then define

a2 (A) = f(( JI' I,2]AII ( 121r[aj I + [J j2 J2 , 2

j=l'A '

[ailP
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where a. j 1,2,3,4 are the four vertices of the element A

Further let

2() : [gi-' iJll2

i=1 H (A)

and then define the error indicator (which obviously is simultaneously an upper

and lower one)

h2 22

(8.36) 2 (A) = -- a 2 (A) + h 2 yB 2 (A)

where y>O is a constant which will be determined later. We mention here only

that for smooth g we have IB(A) , Ch .

Now we have

THEOREM 8.7. Let the assumptions of Theorem 8.6 be satisfied. Then

1 2 = 2 2 -13 24 2
(8.37) I11& l,, = Y I 2 (A ) + C[ {(p- h +0- h )Iukl2 +

"EVI' k=l H (Q(V'))

+ P-2ell' + (- 1h+p-2h2) IlUk 3 H'ell H +

H H (Q (D H0 0

2 -l
+ { X hljujJH 3  + nilell ! h h U.H +

j=l H (Q(D')) H (Q(D')) j=l H3((D'

+ I le l l 0

Proof. We have for u - U = e = (el,e 2)

22
IIlu-UjjjQ(V,,,
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I (A+21,)((De) 2+(De2)2) + 1[(De,) 2+(De) 2 + 2vtD 2elDle 2] +

Q(D'" )

+ 2A[D 1 elD 2e2J}dx

Using Lemma 8.4 and Theorem 8.6 we get the desired result.

So far we have defined the error indicator r(A) by (8.36) for all AEtJ'".

k -

We will extend this definition to all elements A with AEQ0 (see sections

2 and 6) where the coefficients are constant and A aQk = 0 . If A has an

kedge on 3Q then we shall define the indicator in terms of the jumps in a.
1,j

so that we obtain an upper and lower estimator. The detailed formulation afid

extensive numerical experience will be addressed in a forthcoming paper.

Here we will assume only

k kf~Q=a) The indicator has the form (8.36) for any AEQ, ' A, nQ 0 (y > 0)

fixed but arbitrary.

b) All the meshes on K-meshes and the indicator leads to a simultaneous

upper and lower estimator (under the assumptions spelled out in Section 7 ).

We will place some additional assumptions on the solution u and the meshes

used, as listed below. Then we shall prove that the error estimator is asymp-

totically correct. By this we mean that

E

as 11 eII!- 0

We will assume that there is a sequence of K-meshes Dh' h(h) -h,

h - 0 with K independent of h
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c) The mesh is equilibrated in the sense that max n(A)/ min ri(A) < C
NED h AEV

with C independent of h

d) WleHl -.Ch with C -0 independent of h

e) There exists s > 0 and C , both independent of h ,such that

lilJel 11 Chil jeill
H 0(Q)

f) For each c > 0 , h > 0 ,there exists meshes V' > it > Df
h C'i h,c,i h, F-i

i 1,2... .m(h,c) such that

i) the bilinear form has constant coefficients on Q-(V' .)d

ii) D" are uniform and Dare of uniform size

iii) Q (Dj )ll(" . for all i #j
h i)

iv) p(Q(V" *) Q(Dv' ))> Ch 0with C and 0 independent of

h and E , 0 ~< <S .
m(h , F

g) Denote R? - u Q(V' . and analogously Ri' and ft and
%,E ~i=l ,F

we shall assume that

lull H ( < x(E)

hf ) Let Shf' = Q- U Q(D '. and S (h) be the 6 neighborhood

Denote now

-. ~~ ~ IA~ s-, ={ l~l~g~' 0 1
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and we will assume that

((h ) - o (V h)

where u(Vh) respective o( h,) denotes the number of elements contained in Dh

respective b h,c

Now we have

THEOREM 8.8. Suppose that the assumptions listed above are satisfied, then

E> 0 such that for e < c and h < h (c)0 0 -0

KI < ME-
where M is independent of h and c

Proof. For every D"' we can write by theorem 8.7 and property f) and• h,E~

g)

m(h,n) 22

~ Itleill- (",, =  n2 (A) + z -

EU l "hE i

i=l

where

IzI< C[(h 3- 0+h4- 28)x 2 ( + h-20+2s 111ejI2 + (hl+S-6+h2+s-20)x(E) lleIII, +

+ (hl+S-0x( ) + h2s-26 llejjI,)(x(c)h2-s+IjleIII) ]
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and

2
i- yh 2  1 lg -g 2

m i1 H (A)
AE U V'"

Taking into consideration the property d) we get

IzI< cille 111 (hl- +h 2-2s) 2(E) + h 2 ( s - ) + (h S-+h )+S-20)x(c) +

+ (h -0 X
2 () + hl+S-20X(,) + hS-x(E) + h

2s-20

We have

Ilgi-gi! 112 0 Ch 211 [ ill 21
H (A) H H(A)

and therefore

2 2 2 2

IZI I Ch 4 Y i Q(D"'I Ch e X(C)
i=1 h,,

Hence

Iz1+1lI< £llejll

for h < h1 (r)

We have further
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2 2 2

/EDh  m AEV.
AtAE U LI" i

Au 0"'
il h,c,i

and by property (h) we get

2
2 (A) o )2 (A) < (h)n2 < 2 ()2 max

(A h,C max h max 2

A6 h AEDh min

A V h,E ,i

< Cc Y n2(A)
AEDh

when using property c)

So we have for sufficiently smal1l

(1-EM) > 2(A) < 2 (A) 2 (A)

AEDh m AEh
AE U D"'i--i h,c,i

Using further the act that the estimator is an upper and lower estimator we get

m(h ,F 2(8.39) 11 jell I IQ(.,, E) (I+P(h,c)0)
1=1 h, ,i

h, ) Mo, No independent of h1 and F
00

we have

m(h * ) 22; 
112l11 ,,,, i+ ls

i-l 1 I h i h ,E
-el IQVf + 2eS1
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Let us analyze now Ilie,,, . It is easy to see that there exists a function
Sh)f

such that

i) 0 < ph 1 on )

ii) ID 1 111 T -< Ch-

iii) " = 1 on S'"h h,,

= 0 on Q - S"'
h h,c

Obviously now

(8.40) Illeflls.. < B(ePhe Ph)

A typical term of B(e Wh,e0h) is

f A Di(e lh)Dk (eqh)dx

where A is piecewise constant.

We have now

D e ) eD i " e"D i (q 2e ) + z*
D(ej~h)Dk(e ph) =Dle.D(pe)+z

where

hDheD e  + i+ i k k i

Z*~~~~~ ~ ~ ~ ~ 'PDO ',+ hDqheDe +ee ADqh 2 h D e~h ee

Hence

I f Az*dxl I CliIeIlI2[hS-O+h
2s- 2 01
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and so we have

(8.41) B(eOh,eIh) = B(e,e, ) + R

where

2(8.42) R <cllull,

if h < h (r)- 0

Let us analyze now the term B(e,e 2  Obviously supp ei2 cQ(hh)  hbiul supe (h, ) .

Using theorem 5.9 and the remark to it and lemma 4.1, we can find wEM()

supp wCQ(Dh,) such that

lv (e -2_w) 1 2 < Ci 2e, 2 12

PEI?(V) i H (h - eIh- HI (Q)

and o(Dh) < Kc(7 h , )

Denote further

R,= {PE R(Dh) V fQ(Vh ) = 01

Then repeating arguments of theorem 6.1 we get

(8.43) IB(e, e) Y I L ip],e

Denote now

S1

-
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V1, f AjAC~t,1 PEFR* )
p h,r

Using lemma 4.1 we easily get

(8.44) a(y <c T(D( < K (V )
-~ h , E o

* and

(8.45) ~ IIn II111' C 4 '(A)
PER*~ ACOh

* n fact if on w p the bilinear form has constant coefficients and w) f n an o

then lemma 7.5 shows that li1ii III can be estimated from above by the suitable

turn of the error indicators. In the other cases we first use lemma-7.3 and

* lemma 7.5 and the same argument as used in theorem 7.8. Therefore we get

IB(e,ip2 e)I < C[ Y 2 (A)]1/112 4ellh AEd h

Now

I11khelII < Cj1 ell CII <C[1ke 1 121  + 11 P2 el 1 +h Q ~ Hj 1 (S11) nh 1 6(h)S )
H()H h~C) h,c Sh,c

+ 12 el2
+ H 1 heII 1 _ 

6(h)

because 1on hE nd on P si6()we get

( 46 j,2 eII < C(HqJ ell 2  h +E 11S e l
h Q II'ph IWOh H lSV1, 6 (h)_S1(8.4 6)~ Ifhhe II h , C1 S ' + f ~ J e I8 '
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Consider now

(8.47) h (h(h) 2 - e ll ° h  + 1 2hel(h
h, hF, ,E , h - S h,F)

- II h ell Ho(S,,, 6(h)_s, + 2 eil s,, (h S" )
H 'FSl h (soft ''-') H s"6(h

h,c h h,E: h, F

Now

2
(8.48) +el el 8

HI(s" S ) ih h ( 0 1 (h) 5 ,hc h,c H Sh,, - hold

+ ll hD D (Nhe)II Ho(S"' (h) S,, I

h hE

and

(8.49) 11h D(Ohe)Ilo (ST., 6(h) IDi (h e)[HO(sI 6 (h) S'"I ( h , c h , ' H S h , E h , E

I Ihel 1H1 (si' 5(h)_S"' )

,c -h,c

(8.50) ll(Di h)Oh ell H°(S'" 6 (h)s , < Ch- I0hell H (SIt- (h) - s ill
hc h, h,e ~

For xES"' -"' we have
h,c h, E w
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< h,

and so

[ h he H° O(S'"hl (h)_-S'"h E <  Ch0 h hel H I1 (Sol? 6 (h)-_siftE )

h~c hid h,E hE

because he = 0 on Q - S' (h)

So we have from (8.43), (8.49) and (8.50),

h H i~sil , 6(h )_ sillhe HI(sol , (h) _S If
h,c h,E hc h,

Recalling (8.46), (8.47), we get

11he ,II2 < C I Ihel I

h 2 h H 1(02)

and therefore

2 1/2
(8.51) B(e, h e) < C o(Vh ,d)  Tmaxl[%h e llH I 1 <  cE /2(G(Vh))I/nmaxllnbhell Hl1(Q)

_CE 1/2 2 (A)1/2 el1 <Cc1 2 1ell I el1
h J H (Q) H (Q) H (Q)

where we used the fact that the mesh is equilibrated in the sense of the assumption

c) above and that the estimator is an upper and lower one.

Returning to (8.41)

an o n T. ...I. .. .. IIII I 1 11 .. . ... ..
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el 2
1  B e ) " Cf1/2(I e H2l() + Well 1 l~hel )
H HQ H(Q~) H (SI)

and so

11%hel 12 <CeI[eII2
Hl(Q) -- i(Q)

i.e.

B(Phe,$he) < CE: lel 12
h hH I(Q2)

and so by (8.40)

Ille Sh2 . Ce el 12
h,E- H (0)

and the result follows.

The theorem 8.8 obviously shows that the error estimator is asymptotically

correct. This property is achieved for any y > 0 . Let us discuss now the

selection of y . Obviously when the finite element solution is identically zero

then the term in the error indicator associated with the jumps on the edges will

disappear and the error indicator consists only of the "volume" integral

2

y(diam A)2 2Y lgi-gil 2 0
e=l H (A)

Assume now that we have a uniform mesh in IR2 and the exact solution is periodic
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U1  [sin -- x1 sin 2- x2 )C1

2-n 2-nu = [sin -- xI sin h- x21C 2

Then it is easy to see that the finite element solution is identically zero. This

leads to the choice

* 1 __+3___

(8.51) 1 +2)2
2a(X+2p) 2+A2

As said above, the choice of y is rather arbitrary and (8.47) is one of the

possibilities.

We have assumed many very particular properties of the meshes and solutions,

in the theorem 8.8. The problem arises whether these conditions can be satisfied.

Practically we create the meshes in an adaptive mode. The experience has shown

that the meshes which are adaptively constructed have roughly these properties,

E
and that the effectivity index, 111,1 1 seems to converge to 1 quicker than the

theorem 8.8 supports.

For uniform meshes in IR2 and smooth solutions it can be shown that

e l(l+0(E 2

(see [11]) and adaptively created meshes seem to lead to the same behaviour.

In the next section we will discuss some concrete illustrative examples

*i pertinent to these questions.

t,
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9. THE FEARS PROGRAM

Based on the theory explained above, the program FEARS (Finite Element Adap-

tive Research Solver) was developed. FEARS is a fully adaptive program solving

a system of two elliptic equations and produces the error estimation (in

various norms) together with the numerical solution of the given partial dif-

ferential equation. The admissible domain is a union of curvilinear rectangles.

The adaptive approach is based on equilibration of the error indicators. The

description and experimentation with FEARS will be reported elsewhere.

In this paper we are using FEARS as an illustration of the developed theory.

We will discuss here two examples. In both, we are concerned with the (plane

strain) elasticity problem. We assume that E = 1 (E is the Young's elasticity

modulus) and v = .3 (v is the Poission ratio).

Example 1. The elasticity problem on the square with displacements pre-

scribed on the boundary. The data are shown in Figure 9.1. It is easy to see that

the solution belongs to the space H 2-c() (E > 0 , arbitrary).

u=O
V

Ft igure 9.1I. The data of example 1.
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Example 2. The elasticity problem on the rectangle with mixed boundary con-

ditions. The data are shown in Figure 9.2. The solution is of the "stamp" type

u=O u=OuO uO

v=- ___ ___ __

Figure 9.2. The data of example 2.

and the singularities are of the type described in (121 . Solution belong to

the space H 3/2-(Q) , c > 0 arbitrary.

In both cases the exact solution is not known, nevertheless by now elaborate

computations we estimated with sufficient accuracy the exact energy of the solu-

tion. This gives the possibility to compute the (exact) energy norm of the error

and compare it with the estimator.

Example 1. Because of the obvious symmetries of the solution, we can compute

the solution only on the quarter of the original square applying boundary condi-

tions shown in Figure 9.3.

"I' ....... .: ..z : " ' l .. I



u=O

:v=O

Y.=X.=.,, 00=

V,, 0

Figure 9.3. The boundary conditions for example 1.

FEARS constructs adaptively the meshes by equilibrating the error indicators.

Figure 9.4a,b,c,d,e,f,g show the sequence of constructed meshes. We see that

the sequence of meshes satisfies the assumptions made in section 8.

F

~Figure 9.4. Thei seqLIelh( ot adaptively constructed meshes for example 1.

-1
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Figure 9.5 shows the dependence of the energy norm of the error on the number

of Ene elements N . The norm at the error is measured in percent of the energy

norm of the solution (Ii uil) Because the solution belongs to H 2-c (Q)

the rate of convergence is N (or more precisely N for the uniform mesh

as for the adaptive one. The rate N 2 is the maximal possible rate because of

t ]' ' 'p ' I- l t| 'ment -', ,, (f.

30 r I -

II I t i
II I I

I I I I I
20 --------- I

I I I I

S'SL I II I II I
S . I

2 - - -.. --ADAPTIVE I \ UNIFORM I

4- 10 40 10 ---- 00- 000-

o O E N
IL' I i

-, I

I tI
o I

iI iII

IL IiI I I I

I 0 40 1O0 400 1000

INUMBER OF ELEMENTS N

- Figure 9.5. The _ energ'y norm of the error.
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Figure 9.5 shows the slope N-!  in addition to the error behavior of the uniform

and adaptive mesh.

The Figure 9.6 shows the effectivity index 0 respect I - 6 as a function

of the number of elements. We see that for the accuracy in the range of 5-10%,

the effectivity index is quite acceptable from a practical point of view. We

also see that 6 1 1 converges with a higher rate than the error itself.

.20 . 80I I I I I
I UN I I

• II . 0 . I M E ! S H I

,10 j ..- t -" -L 1.90.0 I

I ADAPTIVE I ISMESH 1 IX
_ _ _ W

o .04 ----.- 96

SSLOPE

W
IL

I IIw
-- I I1*

.02---I .98. X
i I--
I I

I II J I

IOI.9

S4 I0 40 100 400 I000

Figure 9.6. The effectivity index -- Example 1.



* •

95

We alsosee that the quality of the error estimator is better for the adaptively

constructed meshes than for the uniform ones. This is likely the consequence

of the equilibration of the error indicators which is essential in our theory.

Example 2. Because of the obvious symmetries of the solution, we can

restrict the computation to the domain on a boundary condition shown in Figure 9.7.

u = X='r,, 0

U1 0 Y,:a' 0

u-. 0X

Figure 9.7. The boundary condition for example 1.
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Figure 9.8a, b, c, d, e, f, g, h, i shows the sequence of the meshes constructed

by FEARS. Once more we see that the assumption about the mesh made in section 8

is essentially satisfied.

I

Figure 9.8. The sequence of adaptively constructed meshes for example 2.

Figure 9.9 shows the behavior of the energy norm of the error. Because the

solution belongs to H 3/ 2-k U > 0 arbitrary) and u H3/2 the rate of convergence

of the uniform mesh is N This is in complete agreement with the data shown

in Figure 9.9. The adaptive mesh gives the rate of convergence N- which is the

maximal possible rate for the smooth solution. We see that the adaptive mesh

-__



97

I ________ _________ _________ _________



1 98

I_ iiI

* I+



99

H + I

H I - H ~ll I I

I H4I I I

EI



100

I DETAIL

I I I I

DEAI



101

za:

N,* N SLOPE N 4

w40 _ f _ "-i-

F T

-30

o ADAPTIVE IMESH UNIFORM

z I

40 40 100 200

NUMBER OF ELEMENTS N

Figure 9.9. The energy norm of the error -- Example 2.

removes the influence of the singularities on the rate of convergence. We see

also very clearly that using a uniform mesh we practically can never achieve an

accuracy of 5%.

Figure 9.10 shows the behavior of the effectivity index for the Example 2.

Once more we see that the effectivity index has practically acceptable value when

the accuracy of the solution is in the range of 5-10%. In addition the rate of

convergence of the effectivity index seems to be twice as high as that of the
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.40 ____.60
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.20 -4 ._80

0 SLOPE
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.08 .2 I
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4 10 40 1OO 400
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Figure 9.10. The effectivity index -- Example 2.

solution. Also we see that the error estimator performs much better for the

adaptively constructed meshes which equilibrate the error indicators than for

the uniform mesh.
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implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

To help bridge gaps between computational directions in engineering,
physics, etc. and those in the mathematical community.

To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

To assist with the education of numerical analysts, especially at the

postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with government
agencies such as the National Bureau of Standards.

To be an international center of study and research for foreign students

in numerical mathematics who are supported by foreign governments or
exchange agencies (Fulbright, etc.).

Further information may be obtained from Professor I. Babu9ka, Chairman,

Laboratory for Numerical Analysis, Institute for Physical Science and

Technology, University of Maryland, College Park, Maryland 20742.
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